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In order to increase the diagnosis accuracy of schizophrenia (SCZ) 
disease, it is essential to comprehensively employ complementary 
information from multiple types of data. It is well known that a 
network is a general method for analyzing relationships between 
patients, with its nodes representing patients and its edges showing 
relationships between them. In this study, we constructed a fused 
network using three types of data including genetic, epigenetic and 
neuroimaging data from a study of schizophrenia patients. We 
developed a network-based prediction approach taking advantage of the 
whole network of patients rather than just individual clusters in the 
network. The majority neighborhood of a node in the network was 
exploited as a feature for discriminating SCZ from healthy controls. 
Compared with other 9 graph-based label prediction methods, our 
network-fusion based label prediction method shows the best 
performance according to the prediction accuracy. The prediction 
power of our proposed method was also tested under different 
parameters settings and an optimal parameter was found for achieving 
the best performance. The method is also computationally efficient and 
can be extended to identify other clinical outcomes.
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1 Introduction

This paper is an extension of work originally pre-
sented in the IEEE International Conference on Bioin-
formatics and Biomedicine (BIBM 2016) [1].

Currently, there is a lack of objective ways for
the diagnosis of schizophrenia (SCZ) [2]. It is gen-
erally diagnosed according to criteria set in either
the American Psychiatric Associations fifth edition of
the Diagnostic and Statistical Manual of Mental Dis-
orders (DSM 5), or the World Health Organizations
International Statistical Classification of Diseases and
Related Health Problems (ICD-10). These criteria use
the self-reported experiences of the patients and re-
port abnormalities in their behaviors, followed by a
clinical assessment by a mental health professional.
However, symptoms associated with schizophrenia
occur along a continuum in the population and must
reach a certain severity before a diagnosis is made [3].
Although in psychiatry as in all of general medicine
there is an irreducible element of the subjective [4],

we should try our best to reduce the subjective part of
medical and psychiatry practice. This goal is well rec-
ognized by the National Institutes of Mental Health
as well [5].

Like many other complex diseases, SCZ is caused
by a combination of genetic, biological, and envi-
ronmental factors, creating a difficult challenge for
diagnosis and defining subtypes. In addition, SCZ is
a highly heritable disorder [6]. The current belief is
that there are a number of genes that contribute to
susceptibility or pathology of SCZ, but none of them
exhibits full responsibility for the disease. It is be-
lieved that SCZ is caused by a number of genetic and
environmental factors [7].

Recently, high-throughput studies are rapidly ac-
cumulating a wealth of ’omics’-scale data, which en-
able comprehensive monitoring of a biological sys-
tem. Meanwhile, there are remarkable medical im-
ages accumulated in hospitals, such as images from
functional magnetic resonance imaging (fMRI). fMRI
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is a fairly new tool that has been used to measure brain
activation utilising the dependency of the magnetic
properties of haemoglobin on the amount of oxygen
it carries. Blood-oxygen-level-dependent (BOLD) sig-
nals measure the alterations in cerebral blood flow
that mark functional brain activity [8]. The intrin-
sic BOLD contrast makes fMRI an invaluable non-
invasive instrument for the investigation of the under-
lying physiological disturbances that lead to manifest
psychiatric disorders. It is anticipated that successful
application and analysis of fMRI in neurological dis-
orders can be used to characterise and diagnose men-
tal illnesses such as Alzheimers disease, SCZ, bipolar
disorder, mild traumatic brain injury and addiction.
It is a valuable way to combine genetic, epigenetic
and imaging data for the diagnosis of SCZ disease.
Many studies have demonstrated that the integra-
tion of fMRI and SNP information will give a more
comprehensive analysis of schizophrenia. For ex-
ample, Yang et al. [9] proposed a hybrid machine
learning method to identify schizophrenia patients
from healthy controls by combining genetic and fMRI
data, and this method achieved better classification
accuracy than using either data alone. Castro et al.
[10] developed a multiple kernel learning approach
that employed both the phase and the magnitude
of complex-valued fMRI data for the classification,
showing improved classification accuracy compared
with using only the magnitude of fMRI data. Cao
et al. proposed a sparse representation clustering
(SRC) model [11, 12] to simultaneously select SNPs
and fMRI voxels as biomarkers for schizophrenia fol-
lowed by a classifier such as support vector machine
(SVM). The integrative model was tested on 20 SCZ
patients and 20 healthy controls, demonstrating that
the complementary information from both fMRI and
SNP data can be utilized to improve diagnosis [13].

The above mentioned SCZ studies, however, only
used two types of data: SNPs and fMRI data. DNA
methylation is one of several epigenetic mechanisms
and can be used by cells to control gene expres-
sion. There are a number of mechanisms controlling
gene expression in eukaryotes, but DNA methyla-
tion is a frequently used epigenetic signaling tool,
which can fix genes in the “off “ position [14]. In
addition, the integration methods used in the above
mentioned research directly used features extracted
from data as predictors. Alternatively, network-based
classification methods mainly employ the topologi-
cal features as predictors. With the rapid develop-
ment of systems biology, network-based classifica-
tion or prediction methods have been widely used
[15, 16, 17, 18, 19, 20, 21].

In our study, we combined three types of data in-
cluding SNPs, DNA methylation and fMRI to con-
struct networks, which were subsequently be fused
for diagnosis of SCZ. Specifically, for each type of
data, we first constructed a patient network, called
a single network. Thus for three types of data, we

constructed three single networks. Then we fused
two or three single patient networks into one sub-
ject network. As a result, we created four fused net-
works: three fused networks from the combinations
of two data types and one fused network from three
data types. Finally, we employed the neighborhood
majority of the nodes in the network to predict un-
known labels, that is, identifying whether a subject is
a schizophrenia patient.

2 Data Preparation

In this study, participant recruitment and data col-
lection were conducted at the Mind Research Net-
work. Three types of data (SNP, DNA methylation
and fMRI) were collected from 208 subjects includ-
ing 96 schizophrenia patients (age: 34 ± 11, 22 fe-
males) and 112 healthy controls (age: 32 ± 11, 44
females). All of them were provided written in-
formed consents. Healthy participants were free of
any medical, neurological or psychiatric illnesses and
had no history of substance abuse. By the clinical in-
terview of patients for DSM IV-TR Disorders or the
Comprehensive Assessment of Symptoms and His-
tory, patients met criteria for DSM-IV-TR schizophre-
nia. Antipsychotic history was collected as part of
the psychiatric assessment. After a series of quality
controls, we selected 184 subjects, including 80 SZ
cases (age: 34 ± 11, 20 females and 60 males) and
104 healthy controls (age:32 ± 11, 38 females and 66
males). After pre-processing, 27,508 DNA methyla-
tion sites, 41,s236 fMRI voxels and 722,177 SNP loci
were obtained for the subsequent biomarker selec-
tions [22, 23, 24, 25, 26, 27].

2.1 SNPs data collection and preprocess-
ing

A blood sample was obtained for each partic-
ipant and DNA was extracted. Genotyping
for all participants was performed at the Mind
Research Network using the Illumina Infinium
HumanOmni1-Quad assay covering 1,140,419 SNP
loci. Bead Studio was used to make the fi-
nal genotype calls. Next, the PLINK software
package(http://pngu.mgh.harvard.edu/∼purcell/plink)
was used to perform a series of standard quality con-
trol procedures, resulting in the final dataset span-
ning 722,177 SNP loci. Each SNP was categorized
into three clusters based on their genotype and was
represented with discrete numbers: 0 for ‘BB‘(no mi-
nor allele), 1 for ‘AB‘ (one minor allele) and 2 for ‘AA‘
(two minor alleles).

2.2 DNA methylation data collection and
preprocessing

DNA from blood samples was assessed by the Illu-
mina Infinium Methylation27 Assay. A methylation
value, beta (β), represents the ratio of the methylated
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probe intensity to the total probe intensity. A se-
ries of quality controls (QC) on the beta values were
applied to remove bad samples and probes, such as
1) Beta value QC: Change any beta value to NaN,
if p>0.05. 2) Bad sample/ bad marker removing:
Samples with >5% of missing (NaN) values; mark-
ers with >5% of missing (NaN) values. This resulted
in the identification of good methylation data from
224 subjects, 27,508 markers (some have missing val-
ues <5%). After QC, we used the K nearest neighbor
(KNN) method [28]to impute for the missing values.

2.3 fMRI data collection and preprocess-
ing

The fMRI data were collected during a sensorimotor
task, a block-design motor response to auditory stim-
ulation. During the on-block, 200msec tones were
presented with a 500 msec stimulus onset asynchrony
(SOA). A total of 16 different tones were presented in
each on-block, with frequency ranging from 236 Hz to
1318 Hz. The fMRI images were acquired on Siemens
3T Trio Scanners and a 1.5T Sonata with echo-planar
imaging (EPI) sequences using the following param-
eters (TR = 2000 msec, TE = 30 msec (3.0T)/40
msec (1.5T), field of view = 22cm, slice thickness
= 4mm, 1mm skip, 27 slices, acquisition matrix =
64 × 64, flip angle =90◦.). Data were pre-processed
in SPM5 (http://www.fil.ion.ucl.ac.uk/spm) and were
realigned, spatially normalized and resliced to 3× 3×
3mm3, smoothed with a 10×10×10mm3 Gaussian ker-
nel to reduce spatial noise, and analyzed by multiple
regression considering the stimulus and their tempo-
ral derivatives plus an intercept term as regressors. Fi-
nally the stimulus-on versus stimulus-off contrast im-
ages were extracted with 53×63×46 voxels and all the
voxels with missing measurements were excluded.

3 Methods

3.1 Overview

We employed a network-based semi-supervised learn-
ing (SSL) scheme, which improves the predictive
power by using unlabeled data [29, 30, 31, 32]. It
is compuationally efficient and the learning time
depends nearly linearly on the number of network
edges. Also, the accuracy is comparable with other
methods such as kernel-based methods with a longer
learning time [18, 33]. Moreover, the network struc-
ture can facilitate the interpretation of gene-gene in-
teractions and/or region- region connections in the
brain [34, 35, 36], which is one of the advantages of
network-based SSL.

Based on a fused network, our label prediction
method mainly consists of three procedures: network
construction, network fusion and label prediction us-
ing network-derived features.

3.2 Network Construction

Based on the features selected from SNPs, DNA
methylation and fMRI data, a subject network can be
constructed. Suppose we have n samples and m mea-
surements (e.g., DNA methylation). A subject similar-
ity network is represented as a graph G = (V,E). The
vertices V correspond to the subjects {x1,x2, ...,xn} and
the strengths of the edges E are the weighted value
of the similarity between subjects. The edge weights
are represented by an n × n similarity matrixW, with
each Wij indicating the similarity between subjects xi
and xj . ρ(xi ,xj ) is represented as the Euclidean dis-
tance between subjects xi and xj . In order to calculate
edge strength, a Gaussian function was taken on the
Euclidean distance between subjects:

Wij =

 exp(−ρ(xi ,xj )2

σ2 ), if i ∼ j
0. otherwise

(1)

If i is in j
′

s K-nearest-neighborhood and vice
versa, nodes i, j can be connected by an edge. In our
study, we constructed three individual networks for
SNPs, DNA methylation, and fMRI data.

3.3 Network Fusion

We fuse multiple networks into one network, using
mean fusion in our study. Multiple networks, de-
noted by Gm = (Vm,Em,wm),m = 1,2,3, . . . ,N , are con-
structed from multiple types of data. They have the
same network nodes and the edge strength in the
fused network is the mean value of edge strength of
all individual networks.

G = (V ,E,w), with V = ∪mVm,E = ∪mEm,

and w(i, j) =
1
N

N∑
m=1

wm(i, j). (2)

Using this graph fusion method, we fused two or
three single patient networks into one subject net-
work. As a result, we created four fused networks:
three fused networks from the combinations of two
data types and one fused network for three data types.

3.4 Label Prediction Based on Neighbor-
hood Majority

A network is a map of interactions, with the links
measuring the association between objects or sub-
units. A labeled subject is marked either by 0 or 1,
representing two possible labels: healthy or disease,
respectively. The edges have an essential role in influ-
encing the propagation between the subjects to pre-
dict the true label of the unknown subject. We as-
sumed that the labels of two subjects are more likely
to be the same if the two subjects are more closely
related to each other. Therefore, the labels can be
predicted based on the similarities between subjects
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with their genomic profiles and/or imaging features.
Edges in network-based SSL represent the similarities
between subjects that can be extracted from different
data including SNPs, DNA methylation and fMRI data
(Figure).

Network-based classification methods can be clas-
sified into two types [21]: direct annotation schemes,
which infer the class label of a node based on its
connections in the network, and module-assisted
schemes, which first identify modules of related
nodes and then annotate each module based on the
known labels of its members. Neighborhood count-
ing is a simple and direct method for label prediction,
which determines the label of a subject based on the
known label of subjects lying in its immediate neigh-
borhood. Here, we used neighborhood majority to
predict the unknown labels. We first calculated the
neighborhood majority of a query subject. Then, the
subject is assigned the same type of label as the one of
its immediate neighbors with greatest neighborhood
majority (Figure).
For a query subject i, the majority of its immediate
neighbors can be defined as:

Mk =
Nk∑
j=1

Wij (3)

where k represents subject class index and Nk is the
number of subjects in class k. Then the label of sub-
ject i is defined as:

y(i) = y(argmax
k
Mk) (4)

4 Results and Discussions

We employed a network-based classification method
to predict whether new subjects are schizophrenia pa-
tients. After preprocessing the three types of collected
data: SNPs, DNA methylation and function MRI data,
we chose 184 subjects with all three types of data.
We used 5-fold cross validation to evaluate our pre-
diction method. A two-step feature selection method
was applied to the labeled data sets. At first, for SNPs
and DNA methylation data sets, we preselected the
features based on the genes in KEGG pathways and
this procedure yielded 14,875 SNPs and 6,935 DNA
methylation sites. Then, for three types of data, we
utilized the t-test to select the significantly differen-
tial features (p≤0.01) between normal and disease sta-
tus. The preselected features were used to construct
a subject-subject network. A single-type network was
built for each data type. That is, three single-type
networks were generated. Next, a network fusion
method was used to build fused networks from two
or three single-type networks. Thus we can get four
fused networks: three fused networks from the pair-
wise combinations of two data types and one fused
network from three data types. In our previous study
[37], it has been shown that the technique of data fu-
sion will improve the classification performance of

network based classifiers. Therefore, in this paper, we
focus on the study of the fused network from three
types of data. Based on the fused network, we uti-
lized nodes’ features in a network to predict the label
of a testing subject. This process is illustrated in Fig-
ure. Our prediction method is called MMN, which is
a majority-neighborhood-based classification method
by mean fusion.

We also compared the performance of our model
with that of several other network based classifica-
tion methods, with fixed parameter settings (σ2 =
510, andK = 20). We compared 10 network based
methods, whose differences consist in the procedure
of network fusion and the algorithm of classifica-
tion. For network fusion, two alternative methods
are the mean fusion as used by our model, and Sim-
ilarity Network Fusion (SNF) [38]. For classifica-
tion procedure, we used five different classification
methods: majority-neighborhood based classification
(MN), which is adopted by our model, spectral clus-
tering (SPC) [39, 40], support vector machine (SVM)
[41], local and global consistency (LGC) [32], and la-
bel propagation (LP) [42]. SPC is a module-assisted
classification approach based on spectral clustering,
which is efficient in capturing global structure of a
graph [43]. SVM utilizes 11 node features extracted
from the network for label classification, and these
11 node features are: betweenness centrality, close-
ness centrality, degree centrality, Bonacich Power cen-
trality scores, the (Harary) graph centrality, informa-
tion centrality, the load centrality, the vertex prestige
scores, the stress centrality, and clustering coefficients
[44]. LGC utilizes both the local and the global con-
sistency of a new patient in a patient-patient net-
work for classification. LP predicts the clinical out-
come of the new patient based on a network structure
called label propagation. Thus, we have 10 different
models, which are MMN (our model), SMN, MSPC,
SSPC, MSVM, SSVM, MLGC, SLGC, MLP, and SLP,
respectively. To evaluate the performances of these
10 network-based label prediction methods, we com-
puted some widely used metrics, e.g., true positive
rate (TPR), true negative rate (TNR), negative pre-
dictive value (NPV), false positive rate (FPR), false
negative rate (FNR), false discovery rate (FDR), accu-
racy (ACC), and F1 (F1 = 2TP/2TP+FP+FN) of each
method. The classification performances of all these
models are listed in Table 1.

From these results it is evident that our model,
MMN performs significantly better than other net-
work based classification methods, in terms of some
key metrics, e.g. ACC, FDR, etc. Also, it seems
that those mean fusion based methods (MLP, MLGC,
MMN, MSPC, MSVM) works slightly better than thef
corresponding SNF based methods (SLP, SLGC, SMN,
SSPC, SSVM), which demonstrates the advantage of
mean fusion over SNF. In summary, mean fusion is
more suitable than SNF for classification, and MMN
works significantly better than other graph-based
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Table 1: The performances of different graph-based label prediction methods
Methods TPR TNR NPV FPR FNR FDR ACC

SLP 1 0 NA 1 0 0.568 0.432

MLP 1 0 NA 1 0 0.568 0.432

SLGC 1 0 NA 1 0 0.568 0.432

MLGC 1 0 NA 1 0 0.568 0.432

SMN 0 1 0.568 0 1 NA 0.568

MMN 0.588 0.756 0.698 0.244 0.412 0.332 0.686

SSPC 0 1 0.568 0 1 NA 0.568

MSPC 0.338 0.726 0.6 0.274 0.662 NA 0.556

SSVM 0 1 0.56 0 1 NA 0.56

MSVM 0.388 0.754 0.614 0.246 0.612 0.424 0.598

Table 2: The performances of our label prediction method MMN with different σ2(K = 20)
σ2 TPR SPC NPV FPR FNR FDR ACC F1

100 0.54 0.688 0.65 0.312 0.464 0.408 0.624 0.566

150 0.54 0.688 0.65 0.312 0.464 0.408 0.624 0.576

200 0.564 0.716 0.672 0.284 0.438 0.374 0.65 0.582

250 0.552 0.726 0.674 0.274 0.45 0.378 0.652 0.592

300 0.564 0.746 0.684 0.254 0.438 0.352 0.668 0.603

350 0.564 0.746 0.684 0.254 0.438 0.352 0.668 0.598

400 0.564 0.756 0.686 0.244 0.438 0.342 0.674 0.607

450 0.564 0.756 0.686 0.244 0.438 0.342 0.674 0.602

500 0.588 0.756 0.698 0.244 0.412 0.332 0.686 0.625

510 0.603 0.758 0.707 0.242 0.399 0.329 0.694 0.630

520 0.612 0.746 0.71 0.254 0.388 0.336 0.692 0.632

530 0.612 0.746 0.71 0.254 0.388 0.336 0.69 0.632

540 0.612 0.738 0.708 0.282 0.388 0.366 0.686 0.628

550 0.612 0.738 0.708 0.262 0.388 0.346 0.684 0.628

560 0.612 0.738 0.708 0.262 0.388 0.346 0.686 0.628

570 0.612 0.738 0.728 0.262 0.388 0.344 0.686 0.628

580 0.612 0.738 0.708 0.262 0.388 0.346 0.686 0.628

590 0.612 0.738 0.708 0.262 0.388 0.346 0.686 0.628

600 0.612 0.738 0.708 0.262 0.388 0.346 0.686 0.631

650 0.6 0.738 0.702 0.262 0.402 0.35 0.68 0.620

700 0.6 0.738 0.702 0.262 0.394 0.346 0.68 0.624

750 0.6 0.738 0.702 0.262 0.402 0.35 0.68 0.620

800 0.588 0.738 0.694 0.262 0.414 0.352 0.674 0.617

850 0.588 0.738 0.694 0.262 0.414 0.352 0.674 0.612

900 0.588 0.728 0.692 0.272 0.414 0.364 0.668 0.611

950 0.588 0.728 0.692 0.272 0.414 0.364 0.67 0.608

methods.

At first, we want to compare two different network
fusion methods: mean fusion and SNF [38]. For each
classification approach, we used both network fusion
methods. So according to the network fusion, the 10
prediction methods implemented in our study are all
grouped into pairwise comparisons. For example, in
SLP and MLP, the first letter S in the method symbol

SLP denotes SNF fusion method and the first M in the
method symbol MLP means mean fusion approach.
It is the same for other pairs of prediction methods:
SLGC and MLGC, SMN and MMN, SSPC and MSPC,
SSVM and MSVM. Table 1 shows the performances of
different prediction algorithms between two network
fusion methods. As can be seen in Table 2, for the
prediction methods based on LP and LGC, there are
no differences in performances between two network
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Table 3: The performances of our label prediction method MMN with different K(σ2 = 510)
K TPR SPC NPV FPR FNR FDR ACC F1

37 0.513 0.708 0.648 0.292 0.488 0.41 0.625 0.546

20 0.603 0.758 0.707 0.242 0.399 0.329 0.694 0.630

18 0.563 0.727 0.678 0.273 0.438 0.371 0.657 0.592

12 0.538 0.728 0.67 0.272 0.463 0.389 0.646 0.57

9 0.525 0.752 0.665 0.248 0.475 0.347 0.654 0.578

7 0.538 0.742 0.669 0.258 0.463 0.34 0.656 0.581

Figure 1 The Schematic of Schizophrenia Diagnosis

fusion approaches. For SSPC and MSPC, the only
one group of module-assisted prediction methods,
their accuracies are close to each other and neither got
good performance. The results are similar to another
pair of prediction methods: SSVM and MSVM. The
major difference between SPC-based pair is that the
mean-fusion-based method MSVM obtained higher
accuracy than SNF-based method SSVM. However,
the comparison results between SMN and MMN dif-
fer greatly from other graph-based prediction method
pairs. For each of the performance metrics, MMN per-
forms better than SMN, especially the ACC. Actually,

the network fusion method used in this study uses
uniform weight, i.e., equal weight for each of multi-
ple individual networks. In the future, we will try to
develop a weighted mean fusion method, which can
assign an optimal weight for each individual network.

Above all, our prediction method MMN performs
the best among all those graph-based label prediction
methods and it is computationally efficient.

When computing the edge strength for construct-
ing networks, there are two parameters σ,K related to
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the prediction accuracy. When selecting an optimal
σ , we fixed the parameter K (K=20) and evaluated the
performances with σ2 ranging from 100 to 950. The
results are shown in Table 2 and we can see that when
σ2 is too small or too large, the prediction accuracy
decreases and MMN performs best with σ2 = 510.
When selecting an optimal K , σ2 was fixed at 510
with K changing in the range 7, 9, 12, 18, 20, 37
corresponding to 1/25, 1/20, 1/15, 1/10, 1/9, 1/5
of the number of the samples. As shown in Table 3,
our methods achieves the best accuracy with K = 20,
which is about 1/10 of whole sample (nodes) size.

5 Conclusions

We combined SNPs, DNA methylation and fMRI data
into a single comprehensive network using a simple
network fusion approach. A network-based label pre-
diction method was applied to the network for pre-
dicting schizophrenia patient. Compared with other 9
graph-based label prediction approaches, our predic-
tion method shows the best performance. However,
our network fusion method used a uniform weight
based combination of each network and in the fu-
ture we will find an optimal weight based method to
improve the prediction accuracy. In addition, Kim
et al.[19] incorporated genomic knowledge when in-
tegrating multi-omics data for predicting the clini-
cal outcome of cancer, which improved the predictive
power. Therefore, we will also incorporate other prior
knowledge into the construction of patient connection
networks.
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